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It is known that a single product shock measure in some of the one-dimensional driven-diffusive systems
with nearest-neighbor interactions might evolve in time quite similarly to a random walker moving on a
one-dimensional lattice with reflecting boundaries. The nonequilibrium steady state of the system in this case
can be written in terms of a linear superposition of such uncorrelated shocks. Equivalently, one can write the
steady state of this system using a matrix-product approach with two-dimensional matrices. In this paper, we
present an equilibrium two-dimensional one-transit walk model and find its partition function using a transfer
matrix method. We will show that there is a direct connection between the partition functions of these two
systems. We will explicitly show that in the steady state, the transfer matrix of the one-transit walk model is
related to the matrix representation of the algebra of the driven-diffusive model through a similarity transfor-
mation. The physical quantities are also related through the same transformation.
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I. INTRODUCTION

During the last couple of years, the time evolution of a
single product shock measure in one-dimensional driven-
diffusive systems �1–3� was studied in a series of papers
�4–9�. It has been observed that by applying some con-
straints on the microscopic reaction rates of the system, the
shock front might have simple random walk dynamics while
reflecting from the boundaries of the lattice. In this case, the
steady state of the system can be easily obtained by consid-
ering a linear superposition of such product measures. Three
families of two-state systems with nearest-neighbor interac-
tions was introduced and studied in �5�. This was also gen-
eralized in the multispecies systems with long range interac-
tions and even in the systems with discrete time updating
scheme �10�.

The study of the steady-state properties of one-
dimensional driven-diffusive systems has a long history. Dif-
ferent approaches have been used in order to find the
stationary-state probability distribution function of these sys-
tems ranging from the Bethe ansatz to the matrix-product
approach. In the latter scenario, one writes the stationary
state of the system as a matrix element of product of non-
commuting operators associated with different states of each
lattice site of the system. The algebraic relation between
these operators, sometimes called the algebra of the system,
might have finite- or infinite-dimensional matrix representa-
tions �11�. In an attempt to understand the nature of the ma-
trix representations of these algebras, it has been observed
that for the systems in which a single product shock measure
has a simple random walk dynamics under the time evolution
generated by the so-called Hamiltonian of the system, the
stationary-state probability distribution function can be ex-
pressed by a two-dimensional matrix representation. These
matrices contain all of the information about the hopping
rates of the shock front and also the densities of the particles

on the left and the right hand side of the shock position. It
has been confirmed that the conditions under which the prod-
uct shock measure has a simple random walk dynamics are
exactly those for the existence of a two-dimensional matrix
representation for the algebra of the system �12�.

Following the paper by Arndt �13�, investigations showed
that some of the concepts used in the equilibrium statistical
mechanics can be extended to the out-of-equilibrium sys-
tems. These concepts include the Yang-Lee description of
phase transitions in equilibrium systems. It is known that by
defining an ad hoc partition function in terms of the micro-
scopic reaction rates of an out-of-equilibrium system, one
can apply the Yang-Lee approach to spot the transition
points. On the other hand, in �14–16�, the connection be-
tween the steady state of a one-dimensional driven-diffusive
system, i.e., the Asymmetric Simple Exclusion Process
�ASEP� in random sequential updating scheme with that of a
one-transit walk model, was investigated. The investigations
were also extended to the case of ASEP with parallel updat-
ing scheme in �17�.

The authors in �15� showed that by introducing two
fugacities associated with the densities of contact points in
the equilibrium one-transit walk model, one can clearly ex-
plain the phases in the walk model. On the other hand, they
showed that if one replaces the two fugacities with the
boundary rates of ASEP, a better understanding of the phase
diagram of this nonequilibrium system can be obtained. In
the present paper, we extend the above mentioned ideas to
the case where the shocks with simple random walk dynam-
ics appear in the most general one-dimensional driven-
diffusive system. We define a one-dimensional driven-
diffusive lattice model with open boundaries in which it is
assumed that a single product shock measure can move on
the lattice with random walk dynamics. One can introduce an
ad hoc partition function for this model in terms of its mi-
croscopic reaction rates. We also present an equilibrium one-
transit walk model. As in �15�, the partition function of this
model can be calculated by defining proper fugacities. We
aim to show that the physical quantities in both models are*farhad@ipm.ir
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closely related. We believe that the connection between these
two systems in the steady state helps us understand the na-
ture of applicability of equilibrium concepts to the nonequi-
librium systems.

This paper is organized as follows: we start with the defi-
nition of the walk model and calculate some of its relevant
physical quantities in terms of two proper fugacities. In order
to find the partition function of this model, we will use the
transfer matrix method. Then, we consider a general one-
dimensional driven-diffusive system and show how its
steady-state probability distribution function can be calcu-
lated using a matrix-product method and a two-dimensional
matrix representation. We finally conclude by showing that
the physical quantities of these two systems are closely re-
lated if one relates the hopping rates of the shock front in the
driven-diffusive system with the fugacities in the walk
model.

II. WALK MODEL

Consider a random walker that moves on a two-
dimensional path. Each path is defined on a diagonally ro-
tated square lattice. The paths start at �0,0� and end at �2n ,0�.
The walker can only move in the northeast �NE� or in the
southeast �SE� direction. The walker can never take two con-
secutive steps to NE while it might take two consequent
steps to SE only once. Each path either crosses the horizontal
line only once �in this case, the path can be factorized into
two Dyck paths� or never crosses it �in this case, the path is
a single Dyck path�. According to our definition, there are
only n+1 different paths of this type. A typical path is illus-
trated in Fig. 1. As can be seen, the height of each step can
be +1, 0 or −1. A fugacity z1 is given to each down step and
z2 to each up step, except those ending on the x axis. The
partition function of this model, which contains 2n steps, can
be easily written as

Zn�z1,z2� = �z1z2�nZ̃n�z1,z2� , �1�

in which

Z̃n�z1,z2� = �
q=0

n

z1
−qz2

−n+q =
z1

−nz2 − z2
−nz1

z2 − z1
. �2�

The expression �2� has a simple interpretation given in �16�.
The weight z1

−qz2
−n+q, associated with a path containing q con-

tacts with the x axis from above, is obtained by assigning a
factor z1

−1 to each contact with the x axis from above, exclud-
ing an initial upward step, and a factor z2

−1 to each contact
from below, excluding a final upward step. As explained in
�16�, the prefactor �z1z2�n does not change the critical behav-
ior of the walk model.

In what follows, we will show that the partition function

Z̃n�z1 ,z2� can be written as

Z̃n�z1,z2� = �L�Tn�R� , �3�

in which T is a two-step transfer matrix. We associate T° to
each odd step and Te to each even step and write T=ToTe. In
order to find the transfer matrix T and the vectors �R� and �L�,
we first introduce four base vectors �s1�= �1+�, �s2�= �1−�,
�s1��= �0+�, and �s2��= �0−� with the following properties:

�
	si


�si��si� = �
	si�


�si���si�� = I , �4�

in which I is an identity 2�2 matrix. Using the complete-

ness of the base vectors, the partition function Z̃n�z1 ,z2� can
be expanded as follows:

Z̃n�z1,z2� = �
	si�,sj�,¯,sn+1� ,si,sj,¯,sn


�L�si���si��T
o�si��si�Te�sj��

��sj��T
o�sj��sj� ¯ �sn+1� ��sn+1� �R� . �5�

The matrix representations for the base vectors can be cho-
sen as

�1+� = �0+� = �1

0
�, �1−� = �0−� = �0

1
� . �6�

We assign these base vectors to the different vertices of each
path according to the Fig. 2. Now, according to the definition
of the model, only the following transitions are allowed:

�1+�Te�0+� =
1

z1
, �1+�Te�0−� = 0,

�1−�Te�0+� = 0, �1−�Te�0−� =
1

z2
,

�0+�To�1+� = 1, �0+�To�1−� = 1,

�0−�To�1+� = 0, �0−�To�1−� = 1,

�0+�R� = 1, �0−�R� = 1,

�
��

��
��

��
��

�
�

��
��

��
�(0, 0)

(1, 1)

(2, 0)

(2n − 1,−1)

(2n, 0)

FIG. 1. A typical one-transit walk.
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FIG. 2. Assigning the base vectors to the vertices.
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�L�0+� = 1, �L�0−� = 0. �7�

These equations determine the transfer matrices T° and Te

To = �1 1

0 1
�, Te =


1

z1
0

0
1

z2

� , �8�

and also the vectors �L� and �R�

�L� = �1,0�, �R� = �1

1
� . �9�

Now, using Eqs. �8� and �9�, one can readily see that Eq. �3�
gives Eq. �2�.

Following �15�, we define two contact operators âi

= �1+�2i−1�0+�2i and b̂i= �1−�2i−1�0−�2i associated with a contact
from above and below the x axis, respectively. Now, one can
calculate the probability of finding a contact at site 2i above
or below the horizontal line as follows:

�âi�n =
�L�TiâiT

n−i�R�
�L�Tn�R�

, �10�

�b̂i�n =
�L�Tib̂iT

n−i�R�
�L�Tn�R�

. �11�

It is now easy to check that these probabilities can be written
as

�âi�n =
Z̃i�z1,��Z̃n−i�z1,z2�

Z̃n�z1,z2�
, �12�

�b̂i�n =
Z̃i−1�z1,z2�Z̃n−i+1��,z2�

Z̃n�z1,z2�
. �13�

Using the fact that Z̃n�z1 ,z2�= Z̃n�z2 ,z1�, it can be seen that
these probabilities have the following symmetry:

�âi�n�z1,z2� = �b̂n−i+1�n�z2,z1� , �14�

which can be understood from the symmetry of the paths.
Let us define the average number of contacts from above and
below the horizontal axis at position x= i

n �0�x�1� as

�âx� = �âxn�n, �b̂x� = �b̂xn�n. �15�

Now, in the thermodynamic limit n→� and in different
phases of the one-transit walk model, we find for average
number of contacts from above x axis

�âx� = �0 for z1 � z2,

1 for z2 � z1,

1 − x for z1 = z2
� �16�

and for the average number of contacts from below x axis

�b̂x� = �1 for z1 � z2,

0 for z2 � z1,

x for z1 = z2.
� �17�

In the following sections, we present a general one-
dimensional driven-diffusive system with open boundaries.
We discuss the case when a single product shock measure
can develop in the system. The steady-state probability dis-
tribution will be given using a matrix method. Finally, we
investigate its connections with the walk model.

III. SHOCK IN A DRIVEN-DIFFUSIVE SYSTEM

Consider a driven-diffusive system of classical particles
defined on a one-dimensional lattice of length n with open
boundaries. For simplicity, we consider the case where each
lattice site can be occupied by a single particle or it can be
empty, although it is easy to generalize the idea to the sys-
tems with more than one species of particles. The time evo-
lution of the probability distribution function of any configu-
ration of a Markovian interacting particle system �P�t�� is
governed by a master equation, which can be written as a
Schrödinger-like equation in imaginary time

d

dt
�P�t�� = H�P�t�� , �18�

in which H is called the Hamiltonian �3�. The matrix ele-
ments of the Hamiltonian H are the transition rates between
different configurations. For a system with nearest-neighbor
interactions, the Hamiltonian H has the following general
form:

H = �
k=1

n−1

hk,k+1 + h1 + hn. �19�

in which

hk,k+1 = I��k−1�
� h � I��n−k−1�, �20�

h1 = h�l�
� I��n−1�, �21�

hn = I��n−1�
� h�r�. �22�

For our two-states system, I is a 2�2 identity matrix and h
is a 4�4 matrix describing the bulk interactions. The two
matrices h�r� and h�l� are both 2�2 matrices, which describe
the interactions at the boundaries.

A shock in such a system is defined as a sharp disconti-
nuity between a high-density and a low-density region. We
assume that a single product shock measure in the system
defined as

�k� = �1 − �1

�1
��k

� �1 − �2

�2
��n−k

, �23�

in which k �0�k�n� is the position of the shock, can
evolve in time generated by the Hamiltonian of the system.
The quantities �1 and �2 are the densities of the particles on
the left-hand side and the right-hand side of the shock posi-
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tion. In �12�, the authors have studied the case where the
shock position in Eq. �23� has a simple random walk dynam-
ics in the bulk of the system, while reflecting from the left
and the right boundaries, by applying some constraints on
the microscopic reaction rates of the system. If the shock
front hops to the left �right� with the rate �l��r�, we assume
that it reflects from the right �left� boundary with the same
rate. As we will discuss, this will not alter the generality of
the problem.

The steady state of the system it this case can be written
as a linear superposition of the shocks �23�. In the same
reference, the authors also showed that the same steady state
can be obtained using a matrix-product approach. According
to this approach, the steady state of the system �P�� can be
written as

�P�� =
1

Zn
�W��D

E
��n

�V� , �24�

provided that one chooses the operators E and D, associated
with the presence of a hole and a particle at each lattice site,
as follows:

E = 
�1 − �1� d0

0
�l

�r
�1 − �2� �, D = 
�1 − d0

0
�l

�r
�2� . �25�

The matrix elements of the vectors �V� and �W�, defined as

�V� = �v1

v2
�, �W� = �w1 w2 � , �26�

besides d0 should only satisfy two constraints

d0
w1

w2
= �2 − �1, d0

v2

v1
= � �l

�r
���1 − �2� . �27�

The normalization factor in Eq. �24� is given by Zn= �W��D
+E�n�V�. One should note that the only difference between
the representation presented here with the one used in �12� is
that here, we have chosen the upper triangular matrices in-
stead of lower triangular matrices.

IV. CONNECTION BETWEEN THE WALK MODEL
AND THE DRIVEN-DIFFUSIVE SYSTEM

In what follows, we show that the matrix-product parti-
tion function defined in the previous section is exactly equal

to the partition function of the walk model Z̃n�z1 ,z2� defined
in Eq. �3�, provided that the fugacities of the contact point
are chosen as

z1 = 1, z2 =
�r

�l
. �28�

Defining CªD+E and using a similarity transformation, we
can write

Zn = �W̃�C̃n�Ṽ� ,

in which

C̃ = U−1CU, �Ṽ� = U−1�V�, �W̃� = �W�U . �29�

We introduce U as

U =
u1

�l

�r

1 −
�l

�r

u1

0 u2

� , �30�

in which u1 and u2 are assumed to be nonzero. Since the
matrix elements of the vectors �W� and �V� should only sat-
isfy Eq. �26�, we define these elements as

v1 =
u1

1 −
�l

�r

, v2 = u2, w1 =
1

u1
, w2 =

1

u2
 −
�l

�r

1 −
�l

�r

� ,

�31�

provided that

d0
u2

u1
= ��1 − �2�


�l

�r

1 −
�l

�r

� . �32�

Now, it is easy to verify that

C̃ = T, �Ṽ� = �R�, �W̃� = �L� , �33�

which means that the partition function of the walk model

Z̃n�z1=1 ,z2=
�r

�l
� is equal to the normalization factor of the

driven-diffusive system obtained from the matrix-product ap-
proach in Eq. �24�.

Finally, we show that the density profile of the particles in
the driven-diffusive system in terms of the matrix-product
approach defined as

��i� =
�W�Ci−1DCn−i�V�

�W�Cn�V�
, 1 � i � n �34�

can be expressed in terms of the probability of finding a
contact above or below the x axis defined in Eqs. �10� and
�11�. Using the same similarity transformation mentioned
above, one finds

��i� =
�L�Ti−1D̃Tn−i�R�

�L�Tn�R�
, �35�

in which D̃=U−1DU. Now, it is a straightforward step to
show that the density profile of the particles can be rewritten
as

��i� = �1�âi�n + �2�b̂i�n, �36�

given that Eq. �32� is satisfied. Note that in terms of the
fugacities z1 and z2, the phase diagram of both systems can
be explained as follows: for z1�z2 �z1�z2� and in the ther-
modynamic limit n→�, the walk has only contacts from
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below �above� the horizontal axis. This is equivalent to the
fact that the shock front has a tendency to move to the left
�right�, which in turns means that the mean density of the
particles in the bulk of the driven-diffusive system is equal to
�2 ��1�. One can see that these are confirmed by Eq. �36�. On
the other hand, on the coexistence line, one has z1=z2 or in
terms of the shock position, hopping rates �l=�r. On this
line, the shock position can be anywhere on the lattice with
equal probabilities, which results in a linear density profile
for the particles on the lattice. Using Eqs. �16� and �17�, one
can see that Eq. �36� gives the right density profile.

V. CONCLUSION

In this paper, we considered two different systems: a one-
transit walk model defined on a diagonally rotated square
lattice and a general driven-diffusive system in which a
single product shock measure has a simple random walk dy-
namics. We showed that how the phase diagrams of these
two systems are connected by associating the fugacities in

the walk model with the hopping rates of the shock front in
the driven-diffusive system. In fact, following the idea of
�15�, one can consider the normalization factor of a nonequi-
librium system as a partition function of a two-dimensional
equilibrium model. The fugacities defined in the walk model
are related to the hopping rate of the shock front. The main
difference of this paper with those previous is that our ex-
ample belongs to a larger family of driven-diffusive systems
instead of just the ASEP as an example. The physical quan-
tities of these two systems are directly related �for instance,
see Eq. �36��. As a simple generalization, it can be shown
that by redefining the fugacities of the first and the last steps
in the walk model, one can also generate the partition func-
tion of the driven-diffusive systems in the case where the
hopping rates of the shock front in the bulk are different
from those of the boundaries. As another generalization to
this work, one can try to investigate the driven-diffusive sys-
tems in a discrete time updating scheme and find the proper
walk models which are related to them.
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